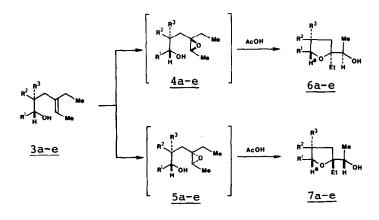

SYNTHETIC STUDIES ON POLYETHER ANTIBIOTICS. II.¹ STEREOCONTROLLED SYNTHESES OF EPOXIDES OF BISHOMOALLYLIC ALCOHOLS.

T. Fukuyama, B. Vranesic, D. P. Negri, and Y. Kishi^{*}
 Department of Chemistry, Harvard University
 12 Oxford Street, Cambridge, Massachusetts 02138, U.S.A.
 (Received in USA 18 April 1978; received in UK for publication 1 June 1978)

In connection with investigations directed toward the total synthesis of polyether antibiotics such as lasalocids and monensins,² we have studied synthetic methods to construct tetrahydrofurans <u>6</u> and <u>7</u> from acyclic precursors. Tetrahydrofurans <u>7</u> represent ring C of isolasalocid A^3 (<u>1</u>) and also ring C of monensin³ (<u>2</u>), while tetrahydrofurans <u>6</u> represent ring B of isolasalocid A (<u>1</u>) and hopefully ring D of monensin (<u>2</u>).

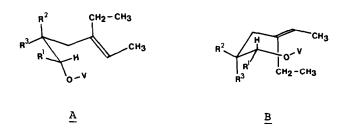

<u>l</u> : isolasalocid A

2 : monensin

Synthesis of Tetrahydrofurans 6

We first examined the degree of stereospecificity on epoxidizing bishomoallylic alcohols 3a-e under various conditions. The resultant epoxide mixture was directly converted to tetrahydrofurans <u>6a-e</u> and <u>7a-e</u> by treatment with acetic acid at room temperature, and then the ratio of <u>6</u> and <u>7</u> was determined⁵ (see Scheme 1). The stereochemistry of tetrahydrofurans <u>6</u> and <u>7</u> was assigned based on the observation that the chemical shift of the H^a proton in <u>6</u> was more effected by Eu(fod)₃ than that in <u>7</u>. The assignment was later confirmed by the fact that lasalocid A was successfully synthesized from a compound similar to <u>6</u>.¹ The results are summarized in Table 1. It is now clear that the Sharpless procedure⁶ provides the tetrahydrofurans <u>6a-e</u> in high stereospecificity. Examination of Dreiding models reveals that the transition state⁷ of the minor epoxide (<u>B</u>) will experience more steric compression due to the interaction between the R³ and ethyl groups than will the major epoxide (<u>A</u>).⁶ This steric compression will become more serious in the case of R³=CH₃ than for R³=H (compare the ratio in the <u>c</u> series with that in <u>b</u> and also in <u>a</u>).

$$\underline{a} : R^{1} = Pr^{i}, R^{2} = R^{3} = H$$


$$\underline{b} : R^{1} = Pr^{i}, R^{2} = CH_{3}, R^{3} = H$$

$$\underline{c} : R^{1} = Pr^{i}, R^{2} = H, R^{3} = CH_{3}$$

$$\underline{d} : R^{1} = p - CH_{3}OC_{6}H_{4}, R^{2} = R^{3} = H$$

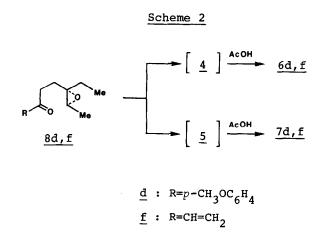

$$\underline{e} : R^{1} = p - CH_{3}OC_{6}H_{4}, R^{2} = CH_{3}, R^{3} = H$$

	Table 1			
<u>3</u>	 epoxidation (conditions shown below)) → <u>6</u>	1	75
	2) AcOH/RT		т	<u>/</u>
a	MCPBA/CH ₂ Cl ₂ /RT	1	:	1
	Mo(CO) ₆ /t-BuOOH/C ₆ H ₆ /reflux	7	:	1
	VO(acac) ₂ /t-BuOOH/C ₆ H ₆ /reflux	7	:	1
	VO (acac) $2/t$ -BuOOH/C $_{6}H_{6}/RT$	9	:	1
b	VO(acac) ₂ /t-BuOOH/C ₆ H ₆ /RT	6	:	1
<u>c</u>	VO(acac) ₂ /t-BuOOH/C ₆ H ₆ /RT	>20	:	1
<u>d</u>	VO(acac) ₂ /t-BuOOH/C ₆ H ₆ /RT	8	:	1
e	VO(acac) ₂ /t-BuOOH/C ₆ H ₆ /RT	8	:	1

Synthesis of Tetrahydrofurans 7

All attempts to stereospecifically synthesize the epoxides 5 from the bishomoallylic alcohols 3 or their derivatives such as acetate, benzoate, trimethylacetate, trimethylsilyl ether, etc., were unsuccessful. Therefore, reduction of epoxy-ketones 8, readily prepared from the corresponding keto-olefins, to the epoxides 5 was investigated. Stereospecificity was again determined after acetic acid workup⁵ (see Scheme 2). The results are summarized in Table 2. Thus,

the desired epoxides 5 can be synthesized with a high degree of stereospecificity by using a combination of lithium aluminum hydride and dl-2-(o-2-toluidinomethyl)pyrrolidine.¹ It is interesting to point out that all lithium aluminum hydrides tested gave the stereospecificity to some extent, but borohydrides including L-Selectride did not. This may indicate that coordination of aluminum to the epoxide and ketone oxygens plays an important role in bringing about a stereospecific reduction. The scope and limitation of this new procedure for various keto-epoxides is currently under investigation. Successful application of this procedure for the total synthesis of lasalocid A will be reported in the following communication. Use of this method for the total synthesis of monensin is in progress.

8	1) reduction (conditions shown below)	- 6	+	<u>7</u> 5
	2) AcOH/RT	- 0	Ţ	
<u>d</u>	NaBH ₄ /methanol/RT	1	:	1
	L-Selectride/ether/RT	1	:	1
	LiAlH ₄ /ether/0°C	1	:	3
	LiAlH(OBu ^t) ₃ /ether/0°C	1	:	4
	LiAlH ₄ /diamine ¹ /ether/-78°C	1	:	11
f	LiAlH ₄ /diamine ¹ /ether/-78°C	1	:	10

Acknowledgment Financial support from National Institutes of Health, National Science Foundation, and Hoffmann-La Roche Company is gratefully acknowledged.

References and Footnotes

- For Part I of this series, see T. Nakata, G. Schmid, B. Vranesic, M. Okigawa, T. Smith-Palmer, and Y. Kishi, J. Am. Chem. Soc., in press.
- Reviews: J. W. Westley, <u>Adv. Appl. Microbiol.</u>, <u>22</u>, 177 (1977), and <u>Ann. Rep.</u> <u>Med. Chem.</u>, <u>10</u>, 246 (1975); B. C. Pressman, <u>Ann. Rev. Biochem.</u>, <u>45</u>, 501 (1976)
- 3. See the references cited in the reviews under reference 2.
- 4. Satisfactory spectroscopic data were obtained for all new compounds.
- 5. The ratio of <u>6</u> and <u>7</u> was determined by VPC and/or by preparative layer chromatographic separation.
- 6. K. B. Sharpless and R. C. Michaelson, J. Am. Chem. Soc., <u>95</u>, 6136 (1973); S. Tanaka, H. Yamamoto, H. Nozaki, K. B. Sharpless, R. C. Michaelson, and J. D. Cutting, J. Am. Chem. Soc., <u>96</u>, 5254 (1974).
- For the mechanism of the vanadium catalyzed epoxidation of olefins, see
 A. D. Chong and K. B. Sharpless, J. Org. Chem., 42, 1587 (1977).
- 8. The zigzag conformation of 3 was assumed as the preferred conformation.